Academic Appointments


All Publications

  • The Stanford stereotactic radiosurgery experience on 7000 patients over 2 decades (1999-2018): looking far beyond the scalpel. Journal of neurosurgery Fatima, N., Meola, A., Ding, V. Y., Pollom, E., Soltys, S. G., Chuang, C. F., Shahsavari, N., Hancock, S. L., Gibbs, I. C., Adler, J. R., Chang, S. D. 2021: 1–17


    OBJECTIVE: The CyberKnife (CK) has emerged as an effective frameless and noninvasive method for treating a myriad of neurosurgical conditions. Here, the authors conducted an extensive retrospective analysis and review of the literature to elucidate the trend for CK use in the management paradigm for common neurosurgical diseases at their institution.METHODS: A literature review (January 1990-June 2019) and clinical review (January 1999-December 2018) were performed using, respectively, online research databases and the Stanford Research Repository of patients with intracranial and spinal lesions treated with CK at Stanford. For each disease considered, the coefficient of determination (r2) was estimated as a measure of CK utilization over time. A change in treatment modality was assessed using a t-test, with statistical significance assessed at the 0.05 alpha level.RESULTS: In over 7000 patients treated with CK for various brain and spinal lesions over the past 20 years, a positive linear trend (r2 = 0.80) in the system's use was observed. CK gained prominence in the management of intracranial and spinal arteriovenous malformations (AVMs; r2 = 0.89 and 0.95, respectively); brain and spine metastases (r2 = 0.97 and 0.79, respectively); benign tumors such as meningioma (r2 = 0.85), vestibular schwannoma (r2 = 0.76), and glomus jugulare tumor (r2 = 0.89); glioblastoma (r2 = 0.54); and trigeminal neuralgia (r2 = 0.81). A statistically significant difference in the change in treatment modality to CK was observed in the management of intracranial and spinal AVMs (p < 0.05), and while the treatment of brain and spine metastases, meningioma, and glioblastoma trended toward the use of CK, the change in treatment modality for these lesions was not statistically significant.CONCLUSIONS: Evidence suggests the robust use of CK for treating a wide range of neurological conditions.

    View details for DOI 10.3171/2020.9.JNS201484

    View details for PubMedID 33799297

  • A robotically assisted 3D printed quality assurance lung phantom for Calypso. Physics in medicine and biology Capaldi, D. P., Skinner, L. B., Dubrowski, P. n., Zhang, H. n., Xing, L. n., Chuang, C. F., Loo, B. W., Bush, K. K., Fahimian, B. P., Yu, A. S. 2021


    Purpose:Radiation dose delivered to targets located near the upper-abdomen or in the thorax are significantly affected by respiratory-motion. Relatively large-margins are commonly added to compensate for this motion, limiting radiation-dose-escalation. Internal-surrogates of target motion, such as a radiofrequency (RF) tracking system, i.e. Calypso® System, are used to overcome this challenge and improve normal-tissue sparing. RF tracking systems consist of implanting transponders in the vicinity of the tumor to be tracked using radiofrequency-waves. Unfortunately, although the manufacture provides a universal quality-assurance (QA) phantom, QA-phantoms specifically for lung-applications are limited, warranting the development of alternative solutions to fulfil the tests mandated by AAPM's TG142. Accordingly, our objective was to design and develop a motion-phantom to evaluate Calypso for lung-applications that allows the Calypso® Beacons to move in different directions to better simulate true lung-motion.Methods and Materials:A Calypso lung QA-phantom was designed, and 3D-printed. The design consists of three independent arms where the transponders were attached. A pinpoint-chamber with a buildup-cap was also incorporated. A 4-axis robotic arm was programmed to drive the motion-phantom to mimic breathing. After acquiring a four-dimensional-computed-tomography (4DCT) scan of the motion-phantom, treatment-plans were generated and delivered on a Varian TrueBeam® with Calypso capabilities. Stationary and gated-treatment plans were generated and delivered to determine the dosimetric difference between gated and non-gated treatments. Portal cine-images were acquired to determine the temporal-accuracy of delivery by calculating the difference between the observed versus expected transponders locations with the known speed of the transponders' motion.Results:Dosimetric accuracy is better than TG142 tolerance of 2%. Temporal accuracy is greater than, TG142 tolerance of 100ms for beam-on, but less than 100ms for beam-hold.Conclusions:The robotic QA-phantom designed and developed in this study provides an independent phantom for performing Calypso lung-QA for commissioning and acceptance testing of Calypso for lung treatments.

    View details for DOI 10.1088/1361-6560/abebaa

    View details for PubMedID 33657537

  • ZAP-X: A Novel Radiosurgical Device for the Treatment of Trigeminal Neuralgia CUREUS Romanelli, P., Chuang, C., Meola, A., Bodduluri, R. M., Adler, J. R. 2020; 12 (5)
  • Clinical impact of the VOLO optimizer on treatment plan quality and clinical treatment efficiency for CyberKnife. Journal of applied clinical medical physics Schuler, E., Lo, A., Chuang, C. F., Soltys, S. G., Pollom, E. L., Wang, L. 2020


    With the recent CyberKnife treatment planning system (TPS) upgrade from Precision 1.0 to Precision 2.0, the new VOLO optimizer was released for plan optimization. The VOLO optimizer sought to overcome some of the limitations seen with the Sequential optimizer from previous TPS versions. The purpose of this study was to investigate the clinical impact of the VOLO optimizer on treatment plan quality and clinical treatment efficiency as compared to the Sequential optimizer. Treatment plan quality was evaluated in four categories of patients: Brain Simple (BS), Brain Complex (BC), Spine Complex (SC), and Prostate (PC). A total of 60 treatment plans were compared using both the Sequential and VOLO optimizers with Iris and MLC collimation with the same clinical constraints. Metrics evaluated included estimated treatment time, monitor units (MUs) delivered, conformity index (CI), and gradient index (GI). Furthermore, the clinical impact of the VOLO optimizer was evaluated through statistical analysis of the patient population treated during the 4months before (n=297) and 4months after (n=285) VOLO introduction. Significant MU and time reductions were observed for all four categories planned. MU reduction ranged from -14% (BS Iris) to -52% (BC MLC), and time reduction ranged from -11% (BS Iris) to -22% (BC MLC). The statistical analysis of patient population before and after VOLO introduction for patients using 6D Skull tracking with fixed cone, 6D Skull tracking with Iris, and Xsight Spine tracking with Iris were -4.6%, -22.2%, and -17.8% for treatment time reduction, -1.1%, -22.0%, and -28.4% for beam reduction and -3.2%, -21.8%, and -28.1% for MU reduction, respectively. The VOLO optimizer maintains or improves the plan quality while decreases the plan complexity and improves treatment efficiency. We anticipate an increase in patient throughput with the introduction of the VOLO optimizer.

    View details for DOI 10.1002/acm2.12851

    View details for PubMedID 32212374

  • ZAP-X: A Novel Radiosurgical Device for the Treatment of Trigeminal Neuralgia. Cureus Romanelli, P. n., Chuang, C. n., Meola, A. n., Bodduluri, R. M., Adler, J. R. 2020; 12 (5): e8324


    Introduction The treatment of trigeminal neuralgia (TN) is one of the most demanding of all radiosurgery procedures, requiring accurate delivery and sharp dose fall off. ZAP-X®, a new, innovative frameless radiosurgical device, maybe an attractive platform for the treatment of TN and other functional brain disorders. Here, we compared the dosimetry of ZAP-X plans for a single patient to that generated by a well-established dedicated radiosurgery device, the CyberKnife. Methods Radiosurgery plans that delineated the cranial nerve from a single patient's fused computed tomography and magnetic resonance imaging (CT-MR) data set were planned on both the ZAP-X and CyberKnife, with the latter serving as a validated benchmark. The same target and treatment planning constraints were applied. Plans were evaluated by a physician with experience treating TN and a medical physicist. The ZAP-X treatment plan used two isocenters delivered through 4-mm collimators based on a non-isocentric plan that delivered 29,441 MU through 81 beams. The CyberKnife plans used a 5-mm collimator for a non-isocentric plan that delivered 17,880 MU through 88 beams. Results Based on visual inspection, the isodose volumes covered by ZAP-X and CyberKnife were similar at the prescription isodose (70% and 80%, respectively, with a maximum dose (Dmax) of 7500 cGy. The conformality index was better for the CyberKnife as compared to ZAP-X. However, the irradiated volumes were smaller at the 50%, 20%, and 10% isodoses for ZAP-X (0.12 cc, 0.57 cc, and 1.69 for ZAP-X; 0.18 cc, 0.91 cc, and 3.41 cc for CyberKnife). In particular, the 20% and 10% isodose volumes were much smaller for ZAP-X, especially on the axial and sagittal planes. Conclusions ZAP-X treatment planning for TN compares favorably with equivalent planning on CyberKnife. The brain volumes containing the 20% and 10% isodoses are smaller using ZAP-X, thus relatively sparing critical structures close to the target, including the Gasserian ganglion and brainstem. This feature could be of clinical relevance by potentially reducing treatment-related complications.

    View details for DOI 10.7759/cureus.8324

    View details for PubMedID 32617203

    View details for PubMedCentralID PMC7325335

  • Technical Note: Performance of CyberKnife® Tracking Using Low-Dose CT and kV Imaging. Medical physics Nano, T. F., Capaldi, D. P., Yeung, T. n., Chuang, C. F., Wang, L. n., Descovich, M. n. 2020


    To investigate the effects of CT protocol and in-room x-ray technique on CyberKnife® (Accuray Inc.) tracking accuracy by evaluating end-to-end tests.End-to-end (E2E) tests were performed for the different tracking methods (6D skull, fiducial, spine and lung) using an anthropomorphic head phantom (Accuray Inc.) and thorax phantom (CIRS Inc.). Bolus was added to the thorax phantom to simulate a large patient and to evaluate the performance of lung tracking in a more realistic condition. The phantoms were scanned with a Siemens Sensation Open 24 slice CT at low-dose (120kV, 70mAs, 1.5mm slice thickness) and high-dose (120kV, 700mAs, 1.5mm slice thickness) to generate low-dose and high-dose digitally reconstructed radiographs (DRRs). The difference in initial phantom alignment, Δ(Align), and in total targeting accuracy, E2E, were obtained for all tracking methods with low and high dose DRRs. Additionally, Δ(Align) was determined for different in-room x-ray imaging techniques (0.5 to 50mAs and 100 to 140kV) using a low-dose lung tracking plan.Low-dose CT scans produced images with high noise, however, for these phantoms the targets could be easily delineated on all scans. End-to-end results were less than 0.95mm for all tracking methods and all plans. The greatest difference in initial alignment Δ(Align) and E2E results between low and high dose CT protocols was 0.32mm and 0.24mm, respectively. Similar results were observed with a large thorax phantom. Tracking using di_erent in-room x-ray imaging techniques (mAs) corresponding to low exposures (resulting in high image noise) or high exposure (resulting in image saturation) had alignment accuracy Δ(Align) greater than 1mm.End-to-end targeting accuracy within tolerance (<0.95mm) was obtained for all tracking methods using low-dose CT protocols, suggesting that CT protocol should be set by target contouring needs. Additionally, high tracking accuracy was achieved for in in-room x-ray imaging techniques that produce high quality images.

    View details for DOI 10.1002/mp.14537

    View details for PubMedID 33064863

  • Successful Use of Frameless Stereotactic Radiosurgery for Treatment of Recurrent Brain Metastases in an 18 Month Old Child. The International journal of neuroscience Rahimy, E., Chuang, C., Spunt, S. L., Mahaney, K., Donaldson, S. S., Gibbs, I. C., Soltys, S. G., Pollom, E., Hiniker, S. M. 2019: 1–6


    There are very few reported cases of stereotactic radiosurgery delivered in children under 3 years of age. We report an 18 month old boy with metastatic recurrence of undifferentiated round cell sarcoma to the brain which was treated with chemotherapy, resection, and robotic frameless stereotactic radiosurgery (SRS). Frameless SRS was delivered without technical difficulties, acute adverse events, or clinical sequelae 1.5 months post-radiation. Longer term follow-up will be needed to evaluate local tumor control and effects on neurocognitive development, endocrine function, and growth. This report adds to the literature of the few reported cases of successfully attempted SRS in very young children.

    View details for DOI 10.1080/00207454.2019.1655015

    View details for PubMedID 31401906

  • Report of AAPM TG 135: Quality assurance for robotic radiosurgery (vol 38, pg 2914, 2011) MEDICAL PHYSICS Dieterich, S., Cavedon, C., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., d'Souza, M. F., Taylor, D. D., Wu, X., Yu, C. 2011; 38 (9): 5264-5264

    View details for DOI 10.1118/1.3626480

    View details for Web of Science ID 000294482900036

  • Report of AAPM TG 135: Quality assurance for robotic radiosurgery MEDICAL PHYSICS Dieterich, S., Cavedon, C., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., d'Souza, M. F., Taylor, D. D., Wu, X., Yu, C. 2011; 38 (6): 2914-2936


    The task group (TG) for quality assurance for robotic radiosurgery was formed by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance (QA) Subcommittee. The task group (TG-135) had three main charges: (1) To make recommendations on a code of practice for Robotic Radiosurgery QA; (2) To make recommendations on quality assurance and dosimetric verification techniques, especially in regard to real-time respiratory motion tracking software; (3) To make recommendations on issues which require further research and development. This report provides a general functional overview of the only clinically implemented robotic radiosurgery device, the CyberKnife. This report includes sections on device components and their individual component QA recommendations, followed by a section on the QA requirements for integrated systems. Examples of checklists for daily, monthly, annual, and upgrade QA are given as guidance for medical physicists. Areas in which QA procedures are still under development are discussed.

    View details for DOI 10.1118/1.3579139

    View details for Web of Science ID 000291405200011

    View details for PubMedID 21815366

  • Erratum: "Report of AAPM TG 135: Quality assurance for robotic radiosurgery". Medical physics Dieterich, S. n., Cavedon, C. n., Chuang, C. F., Cohen, A. B., Garrett, J. A., Lee, C. L., Lowenstein, J. R., D'Souza, M. F., Taylor, D. D., Wu, X. n., Yu, C. n. 2011; 38 (9): 5264

    View details for PubMedID 28524974

Latest information on COVID-19