ERROR! No headcode.htm file found.

Bio

Honors & Awards


  • Tobacco-Related Disease Research Program (TRDRP) Postdoctoral Fellow, University of California (2018-2021)
  • Huck Graduate Dissertation Research Award, The Huck Institutes of Life Sciences, The Pennsylvania State University (2014-2017)
  • Outstanding CMIND research seminar presentations, Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University (2015)

Professional Education


  • Bachelor of Science, Tsinghua University (2008)
  • Master of Science, Tsinghua University (2011)
  • Doctor of Philosophy, Pennsylvania State University (2017)

Publications

All Publications


  • Quantitative in vivo analyses reveal a complex pharmacogenomic landscape in lung adenocarcinoma. Cancer research Li, C., Lin, W., Rizvi, H., Cai, H., McFarland, C. D., Rogers, Z. N., Yousefi, M., Winters, I. P., Rudin, C. M., Petrov, D. A., Winslow, M. M. 2021

    Abstract

    The lack of knowledge about the relationship between tumor genotypes and therapeutic responses remains one of the most critical gaps in enabling the effective use of cancer therapies. Here we couple a multiplexed and quantitative experimental platform with robust statistical methods to enable pharmacogenomic mapping of lung cancer treatment responses in vivo. The complex map of genotype-specific treatment responses uncovered that over 20% of possible interactions show significant resistance or sensitivity. Known and novel interactions were identified, and one of these interactions, the resistance of KEAP1 mutant lung tumors to platinum therapy, was validated using a large patient response dataset. These results highlight the broad impact of tumor suppressor genotype on treatment responses and define a strategy to identify the determinants of precision therapies.

    View details for DOI 10.1158/0008-5472.CAN-21-0716

    View details for PubMedID 34215621

  • Genetic determinants of EGFR-Driven Lung Cancer Growth and Therapeutic Response In Vivo. Cancer discovery Foggetti, G., Li, C., Cai, H., Hellyer, J. A., Lin, W., Ayeni, D., Hastings, K., Choi, J., Wurtz, A., Andrejka, L., Maghini, D. G., Rashleigh, N., Levy, S., Homer, R., Gettinger, S. N., Diehn, M., Wakelee, H. A., Petrov, D. A., Winslow, M. M., Politi, K. 2021

    Abstract

    In lung adenocarcinoma, oncogenic EGFR mutations co-occur with many tumor suppressor gene alterations, however the extent to which these contribute to tumor growth and response to therapy in vivo remains largely unknown. By quantifying the effects of inactivating ten putative tumor suppressor genes in a mouse model of EGFR-driven Trp53-deficient lung adenocarcinoma, we found that Apc, Rb1, or Rbm10 inactivation strongly promoted tumor growth. Unexpectedly, inactivation of Lkb1 or Setd2 - the strongest drivers of growth in a Kras-driven model - reduced EGFR-driven tumor growth. These results are consistent with mutational frequencies in human EGFR- and KRAS-driven lung adenocarcinomas. Furthermore, Keap1 inactivation reduced the sensitivity of EGFR-driven tumors to the EGFR inhibitor osimertinib and mutations in the KEAP1 pathway were associated with decreased time on tyrosine kinase inhibitor treatment in patients. Our study highlights how the impact of genetic alterations differ across oncogenic contexts and that the fitness landscape shifts upon treatment.

    View details for DOI 10.1158/2159-8290.CD-20-1385

    View details for PubMedID 33707235

  • A functional taxonomy of tumor suppression in oncogenic KRAS-driven lung cancer. Cancer discovery Cai, H. n., Chew, S. K., Li, C. n., Tsai, M. K., Andrejka, L. n., Murray, C. W., Hughes, N. W., Shuldiner, E. G., Ashkin, E. L., Tang, R. n., Hung, K. L., Chen, L. C., Lee, S. Y., Yousefi, M. n., Lin, W. Y., Kunder, C. A., Cong, L. n., McFarland, C. D., Petrov, D. A., Swanton, C. n., Winslow, M. M. 2021

    Abstract

    Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multi-step process, however the importance and specific roles of many of these genes during tumor initiation, growth and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of forty-eight known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, while the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression.

    View details for DOI 10.1158/2159-8290.CD-20-1325

    View details for PubMedID 33608386

Stanford Medicine Resources: