Bio

Stanford Advisors


Publications

All Publications


  • FLASH irradiation enhances the therapeutic index of abdominal radiotherapy in mice Natarajan, S., Levy, K., Wang, J., Chow, S., Eggold, J., Loo, P., Manjappa, R., Lartey, F. M., Schuler, E., Skinner, L., Rafat, M., Ko, R., Kim, A., Al Rawi, D., von Eyben, R., Dorigo, O., Casey, K. M., Graves, E. E., Bush, K., Yu, A. S., Koong, A. C., Maxim, P. G., Loo, B. W., Rankin, E. B. AMER ASSOC CANCER RESEARCH. 2020
  • Total abdominal ultra-rapid FLASH irradiation enhances the efficacy of PD-1 inhibition in preclinical models of ovarian cancer Chow, S., Eggold, J. T., Levy, K., Wang, J., Manjappa, R., Breitkreutz, D. Y., Yu, A. S., Bush, K., Dorigo, O., Loo, B. W., Rankin, E. B. AMER ASSOC CANCER RESEARCH. 2020
  • Ultrarapid total abdominal FLASH irradiation in a preclinical model of ovarian cancer. Levy, K., Wang, J., Eggold, J., Natarajan, S., Maxim, P., Loo, B., Rankin, E. AMER ASSOC CANCER RESEARCH. 2020: 49
  • Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Scientific reports Levy, K. n., Natarajan, S. n., Wang, J. n., Chow, S. n., Eggold, J. T., Loo, P. E., Manjappa, R. n., Melemenidis, S. n., Lartey, F. M., Schüler, E. n., Skinner, L. n., Rafat, M. n., Ko, R. n., Kim, A. n., H Al-Rawi, D. n., von Eyben, R. n., Dorigo, O. n., Casey, K. M., Graves, E. E., Bush, K. n., Yu, A. S., Koong, A. C., Maxim, P. G., Loo, B. W., Rankin, E. B. 2020; 10 (1): 21600

    Abstract

    Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.

    View details for DOI 10.1038/s41598-020-78017-7

    View details for PubMedID 33303827

  • THE HYPOXIC TUMOR-MESOTHELIAL NICHE PROMOTES OVARIAN CANCER METASTASIS THROUGH COLLAGEN REMODELING Natarajan, S., Foreman, K., Soriano, M., Shehade, H., Fregoso, D., Eggold, J., Rosen, N. S., Heilshorn, S., Krieg, A. J., Krishnan, V., Dorigo, O., Sinha, S., Fuh, K. C., Rankin, E. B. AMER ASSOC CANCER RESEARCH. 2019: 168
  • Collagen Remodeling in the Hypoxic Tumor-Mesothelial Niche Promotes Ovarian Cancer Metastasis CANCER RESEARCH Natarajan, S., Foreman, K. M., Soriano, M., Rossen, N. S., Shehade, H., Fregoso, D. R., Eggold, J. T., Krishnan, V., Dorigo, O., Krieg, A. J., Heilshorn, S. C., Sinha, S., Fuh, K. C., Rankin, E. B. 2019; 79 (9): 2271–84
  • Erythropoiesis, EPO, macrophages, and bone BONE Eggold, J. T., Rankin, E. B. 2019; 119: 36-41
  • Erythropoiesis, EPO, macrophages, and bone. Bone Eggold, J. T., Rankin, E. B. 2018

    Abstract

    The regulation of erythropoiesis in the bone marrow microenvironment is a carefully orchestrated process that is dependent upon both systemic and local cues. Systemic erythropoietin (EPO) production by renal interstitial cells plays a critical role in maintaining erythropoietic homeostasis. In addition, there is increasing clinical and preclinical data linking changes in EPO and erythropoiesis to altered skeletal homeostasis, suggesting a functional relationship between the regulation of erythropoiesis and bone homeostasis. As key local components of the bone marrow microenvironment and erythropoietic niche, macrophage subsets play important roles in both processes. In this review, we summarize our current understanding of the cellular and molecular mechanisms that may facilitate the coordinated regulation of erythropoiesis and bone homeostasis.

    View details for PubMedID 29551752

  • ESM1 mediates NGFR-induced invasion and metastasis in murine oral squamous cell carcinoma ONCOTARGET Chen, C., Shin, J. H., Eggold, J. T., Chung, M. K., Zhang, L. H., Lee, J., Sunwoo, J. B. 2016; 7 (43): 70738-70749

    Abstract

    Oral squamous cell carcinoma (OSCC) is a highly invasive and metastatic malignancy. The nerve growth factor receptor (NGFR) has been observed to be expressed on a subset of cells in OSCC, and NGFR+ cells have greater tumor-initiating capacity in vivo. Further, inhibition of NGFR reduces tumor growth, indicating a functional role of this receptor; however, the mechanisms by which NGFR confers enhanced tumor formation are not known. Here, we used an established murine model of OSCC and gene expression array analysis to identify ESM1 as a downstream target gene of NGFR, critical for tumor invasion and metastasis. ESM1 encodes a protein called endocan, which has the property of regulating proliferation, differentiation, migration, and adhesion of different cell types. Incubation of NGFR+ murine OSCC cells with nerve growth factor resulted in increased expression of ESM1. Importantly, ESM1 overexpression conferred an enhanced migratory, invasive, and metastatic phenotype, similar to what has been correlated with NGFR expression. Conversely, shRNA knockdown of ESM1 in NGFR overexpressing OSCC cells abrogated the tumor growth kinetics and the invasive and metastatic properties associated with NGFR. Together, our data indicate that NGFR plays an important role in the pathogenesis and progression of OSCC via regulation of ESM1.

    View details for DOI 10.18632/oncotarget.12210

    View details for PubMedID 27683113

  • SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products PLOS PATHOGENS Sowd, G. A., Mody, D., Eggold, J., Cortez, D., Friedman, K. L., Fanning, E. 2014; 10 (12)

    Abstract

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

    View details for DOI 10.1371/journal.ppat.1004536

    View details for Web of Science ID 000346702400024

    View details for PubMedID 25474690

    View details for PubMedCentralID PMC4256475

Latest information on COVID-19