Bio

Professional Education


  • Bachelor of Science, Portsmouth Polytechnic (2008)
  • Doctor of Philosophy, University Of London (2015)

Stanford Advisors


Publications

All Publications


  • MALIGNANT SYNAPTIC PLASTICITY IN PEDIATRIC HIGH-GRADE GLIOMAS Taylor, K., Barron, T., Hartmann, G., Zhang, H., Hui, A., Gillespie, S., Monje, M. OXFORD UNIV PRESS INC. 2021: 21
  • BDNF-TRKB SIGNALING REGULATES NEURON-GLIOMA SYNAPTOGENESIS AND PROMOTES TUMOR PROGRESSION Taylor, K., Zhang, H., Hui, A., Gillespie, S., Monje, M. OXFORD UNIV PRESS INC. 2020: 468
  • How Support of Early Career Researchers Can Reset Science in the Post-COVID19 World. Cell Gibson, E. M., Bennett, F. C., Gillespie, S. M., Guler, A. D., Gutmann, D. H., Halpern, C. H., Kucenas, S. C., Kushida, C. A., Lemieux, M., Liddelow, S., Macauley, S. L., Li, Q., Quinn, M. A., Roberts, L. W., Saligrama, N., Taylor, K. R., Venkatesh, H. S., Yalcin, B., Zuchero, J. B. 2020

    Abstract

    The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.

    View details for DOI 10.1016/j.cell.2020.05.045

    View details for PubMedID 32533917

  • ELECTRICAL CIRCUIT INTEGRATION OF GLIOMA THROUGH NEURON-GLIOMA SYNAPSES AND POTASSIUM CURRENTS Venkatesh, H., Morishita, W., Geraghty, A., Silverbush, D., Gillespie, S., Arzt, M., Tam, L., Ponnuswami, A., Ni, L., Woo, P., Taylor, K., Agarwal, A., Regev, A., Brang, D., Vogel, H., Hervey-Jumper, S., Bergles, D., Suva, M., Malenka, R., Monje, M. OXFORD UNIV PRESS INC. 2019: 251
  • Electrical and synaptic integration of glioma into neural circuits. Nature Venkatesh, H. S., Morishita, W., Geraghty, A. C., Silverbush, D., Gillespie, S. M., Arzt, M., Tam, L. T., Espenel, C., Ponnuswami, A., Ni, L., Woo, P. J., Taylor, K. R., Agarwal, A., Regev, A., Brang, D., Vogel, H., Hervey-Jumper, S., Bergles, D. E., Suva, M. L., Malenka, R. C., Monje, M. 2019

    Abstract

    High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.

    View details for DOI 10.1038/s41586-019-1563-y

    View details for PubMedID 31534222

  • NEURONAL-ACTIVITY SECRETED BDNF INCREASES DIPG PROLIFERATION Taylor, K., Aziz-Bose, R., Blank, A., Geraghty, A., Monje, M. OXFORD UNIV PRESS INC. 2019: 67
  • ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Communications biology Carvalho, D. n., Taylor, K. R., Olaciregui, N. G., Molinari, V. n., Clarke, M. n., Mackay, A. n., Ruddle, R. n., Henley, A. n., Valenti, M. n., Hayes, A. n., Brandon, A. D., Eccles, S. A., Raynaud, F. n., Boudhar, A. n., Monje, M. n., Popov, S. n., Moore, A. S., Mora, J. n., Cruz, O. n., Vinci, M. n., Brennan, P. E., Bullock, A. N., Carcaboso, A. M., Jones, C. n. 2019; 2 (1): 156

    Abstract

    Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood brainstem tumour, with a quarter of patients harbouring somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2. Despite being an amenable drug target, little has been done to-date to systematically evaluate the role of ACVR1 in DIPG, nor to screen currently available inhibitors in patient-derived tumour models. Here we show the dependence of DIPG cells on the mutant receptor, and the preclinical efficacy of two distinct chemotypes of ALK2 inhibitor in vitro and in vivo. We demonstrate the pyrazolo[1,5-a]pyrimidine LDN-193189 and the pyridine LDN-214117 to be orally bioavailable and well-tolerated, with good brain penetration. Treatment of immunodeprived mice bearing orthotopic xenografts of H3.3K27M, ACVR1R206H mutant HSJD-DIPG-007 cells with 25 mg/kg LDN-193189 or LDN-214117 for 28 days extended survival compared with vehicle controls. Development of ALK2 inhibitors with improved potency, selectivity and advantageous pharmacokinetic properties may play an important role in therapy for DIPG patients.

    View details for DOI 10.1038/s42003-019-0420-8

    View details for PubMedID 31925004

  • ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Communications biology Carvalho, D., Taylor, K. R., Olaciregui, N. G., Molinari, V., Clarke, M., Mackay, A., Ruddle, R., Henley, A., Valenti, M., Hayes, A., Brandon, A. D., Eccles, S. A., Raynaud, F., Boudhar, A., Monje, M., Popov, S., Moore, A. S., Mora, J., Cruz, O., Vinci, M., Brennan, P. E., Bullock, A. N., Carcaboso, A. M., Jones, C. 2019; 2: 156

    Abstract

    Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood brainstem tumour, with a quarter of patients harbouring somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2. Despite being an amenable drug target, little has been done to-date to systematically evaluate the role of ACVR1 in DIPG, nor to screen currently available inhibitors in patient-derived tumour models. Here we show the dependence of DIPG cells on the mutant receptor, and the preclinical efficacy of two distinct chemotypes of ALK2 inhibitor in vitro and in vivo. We demonstrate the pyrazolo[1,5-a]pyrimidine LDN-193189 and the pyridine LDN-214117 to be orally bioavailable and well-tolerated, with good brain penetration. Treatment of immunodeprived mice bearing orthotopic xenografts of H3.3K27M, ACVR1R206H mutant HSJD-DIPG-007 cells with 25mg/kg LDN-193189 or LDN-214117 for 28 days extended survival compared with vehicle controls. Development of ALK2 inhibitors with improved potency, selectivity and advantageous pharmacokinetic properties may play an important role in therapy for DIPG patients.

    View details for DOI 10.1038/s42003-019-0420-8

    View details for PubMedID 31098401

  • Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells NATURE MEDICINE Vinci, M., Burford, A., Molinari, V., Kessler, K., Popov, S., Clarke, M., Taylor, K. R., Pemberton, H. N., Lord, C. J., Gutteridge, A., Forshew, T., Carvalho, D., Marshall, L., Qin, E. Y., Ingram, W. J., Moore, A. S., Ng, H., Trabelsi, S., Hmida-Ben Brahim, D., Entz-Werle, N., Zacharoulis, S., Vaidya, S., Mandeville, H. C., Bridges, L. R., Martin, A. J., Al-Sarraj, S., Chandler, C., Sunol, M., Mora, J., de Torres, C., Cruz, O., Carcaboso, A. M., Monje, M., Mackay, A., Jones, C. 2018; 24 (8): 1204-+

    Abstract

    The failure to develop effective therapies for pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. We aimed to quantitatively assess the extent to which this was present in these tumors through subclonal genomic analyses and to determine whether distinct tumor subpopulations may interact to promote tumorigenesis by generating subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced tumors revealed multiple tumor subclones, spatially and temporally coexisting in a stable manner as observed by multiple sampling strategies. We isolated genotypically and phenotypically distinct subpopulations that we propose cooperate to enhance tumorigenicity and resistance to therapy. Inactivating mutations in the H4K20 histone methyltransferase KMT5B (SUV420H1), present in <1% of cells, abrogate DNA repair and confer increased invasion and migration on neighboring cells, in vitro and in vivo, through chemokine signaling and modulation of integrins. These data indicate that even rare tumor subpopulations may exert profound effects on tumorigenesis as a whole and may represent a new avenue for therapeutic development. Unraveling the mechanisms of subclonal diversity and communication in pGBM and DIPG will be an important step toward overcoming barriers to effective treatments.

    View details for PubMedID 29967352

    View details for PubMedCentralID PMC6086334

  • DRUG SCREENING LINKED TO MOLECULAR PROFILING IDENTIFIES NOVEL DEPENDENCIES IN PATIENT-DERIVED PRIMARY CULTURES OF PAEDIATRIC HIGH GRADE GLIOMA AND DIPG Mackay, A., Molinari, V., Carvalho, D., Pemberton, H., Temelso, S., Burford, A., Clarke, M., Fofana, M., Boult, J., Izquierdo, E., Taylor, K., Bjerke, L., Salom, J., Kessler, K., Rogers, R., Chandler, C., Zebian, B., Martin, A., Stapleton, S., Hettige, S., Marshall, L., Carceller, F., Mandeville, H., Vaidya, S., Bridges, L., Al-Sarraj, S., Pears, J., Mastronuzzi, A., Carai, A., del Bufalo, F., de Torres, C., Sunol, M., Cruz, O., Mora, J., Moore, A., Robinson, S., Lord, C., Montero Carcaboso, A., Vinci, M., Jones, C. OXFORD UNIV PRESS INC. 2018: 93–94
  • Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma CANCER CELL Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J., Taylor, K. R., Bjerke, L., Clarke, M., Vinci, M., Nandhabalan, M., Temelso, S., Popov, S., Molinari, V., Raman, P., Waanders, A. J., Han, H. J., Gupta, S., Marshall, L., Zacharoulis, S., Vaidya, S., Mandeville, H. C., Bridges, L. R., Martin, A. J., Al-Sarraj, S., Chandler, C., Ng, H., Li, X., Mu, K., Trabelsi, S., H'mida-Ben Brahim, D., Kisljakov, A. N., Konovalov, D. M., Moore, A. S., Montero Carcaboso, A., Sunol, M., de Torres, C., Cruz, O., Mora, J., Shats, L. I., Stavale, J. N., Bidinotto, L. T., Reis, R. M., Entz-Werle, N., Farrell, M., Cryan, J., Crimmins, D., Caird, J., Pears, J., Monje, M., Debily, M., Castel, D., Grill, J., Hawkins, C., Nikbakht, H., Jabado, N., Baker, S. J., Pfister, S. M., Jones, D. W., Fouladi, M., von Bueren, A. O., Baudis, M., Resnick, A., Jones, C. 2017; 32 (4): 520-+

    Abstract

    We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.

    View details for PubMedID 28966033

    View details for PubMedCentralID PMC5637314

  • Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma CANCER CELL Nagaraja, S., Vitanza, N. A., Woo, P. J., Taylor, K. R., Liu, F., Zhang, L., Li, M., Meng, W., Ponnuswami, A., Sun, W., Ma, J., Hulleman, E., Swigut, T., Wysocka, J., Tang, Y., Monje, M. 2017; 31 (5): 635-?

    Abstract

    Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.

    View details for DOI 10.1016/j.ccell.2017.03.011

    View details for Web of Science ID 000400738600008

    View details for PubMedID 28434841

  • Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma NATURE GENETICS Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y. S., Morozova, O., Philippe, C., Castel, D., Grasso, C. S., Vinci, M., Carvalho, D., Carcaboso, A. M., de Torres, C., Cruz, O., Mora, J., Entz-Werle, N., Ingram, W. J., Monje, M., Hargrave, D., Bullock, A. N., Puget, S., Yip, S., Jones, C., Grill, J. 2014; 46 (5): 457-461

    Abstract

    Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9-12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP) and have been shown to constitutively activate the BMP-TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.

    View details for DOI 10.1038/ng.2925

    View details for PubMedID 24705252

Latest information on COVID-19