ERROR! No headcode.htm file found.

School of Medicine


Showing 101-200 of 355 Results

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Assistant Professor of Neurology and, by courtesy, of Neurosurgery

    Current Research and Scholarly Interests CONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Olivier Gevaert

    Olivier Gevaert

    Assistant Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly Interests My lab focuses on biomedical data fusion: the development of machine learning methods for biomedical decision support using multi-scale biomedical data. We primarily use methods based on regularized linear regression to accomplish this. We primarily focus on applications in oncology and neuroscience.

  • Garry Gold

    Garry Gold

    Professor of Radiology (Musculoskeletal Imaging)

    Current Research and Scholarly Interests My primary focus is application of new MR imaging technology to musculoskeletal problems. Current projects include: Rapid MRI for Osteoarthritis, Weight-bearing cartilage imaging with MRI, and MRI-based models of muscle. We are studying the application of new MR imaging techniques such as rapid imaging, real-time imaging, and short echo time imaging to learn more about biomechanics and pathology of bones and joints. I am also interested in functional imaging approaches using PET-MRI.

  • Mary Kane Goldstein

    Mary Kane Goldstein

    Professor of Medicine (Center for Primary Care and Outcomes Research)

    Current Research and Scholarly Interests Health services research in primary care and geriatrics: developing, implementing, and evaluating methods for clinical quality improvement. Current work includes applying health information technology to quality improvement through clinical decision support (CDS) integrated with electronic health records; encoding clinical knowledge into computable formats in automated knowledge bases; natural language processing of free text in electronic health records; analyzing multiple comorbidities

  • Eric R. Gross

    Eric R. Gross

    Assistant Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly Interests A part of the laboratory studies organ injury and how common genetic variants may affect the response to injury caused by surgery; particularly aldehydes. Aldehyde accumulation can cause many post-operative complications that people experience during surgery- whether it be reperfusion injury, post-operative pain, cognitive dysfunction, or nausea. The other part of the lab studies the impact of e-cigarettes and alcohol, when coupled with genetics, on the cardiopulmonary system.

  • James Gross

    James Gross

    Ernest R. Hilgard Professor and Professor of Psychology

    Current Research and Scholarly Interests I am interested in emotion and emotion regulation. My research employs behavioral, physiological, and brain measures to examine emotion-related personality processes and individual differences. My current interests include emotion coherence, specific emotion regulation strategies (reappraisal, suppression), automatic emotion regulation, and social anxiety.

  • Gunsagar S. Gulati

    Gunsagar S. Gulati

    Casual - Non-Exempt, Cardiovascular Institute Operations

    Bio I am an aspiring physician-scientist interested in the crossroads of computer science, cellular biology, and clinical medicine. I am particularly motivated to leverage recent advances in single-cell genomics and epigenomics to study normal and neoplastic stem cell biology, with the ultimate goal of addressing human cancer.

  • Geoffrey Gurtner

    Geoffrey Gurtner

    Johnson & Johnson Professor of Surgery and Professor, by courtesy, of Bioengineering and of Materials Science and Engineering

    Current Research and Scholarly Interests Geoffrey Gurtner's Lab is interested in understanding the mecahnism of new blood vessel growth following injury and how pathways of tissue regeneration and fibrosis interact in wound healing.

  • Frank Hanley

    Frank Hanley

    Lawrence Crowley, M.D., Endowed Professor in Child Health

    Current Research and Scholarly Interests His research and clinical work focuses on the development of interventional techniques for fetal and neonatal treatment of congenital heart disease, pulmonary, vascular physiology, and the neurologic impact of open-heart surgery. He developed and pioneered the “unifocalization” procedure, in which a single procedure is used to repair a complex and life-threatening congenital heart defect rather than several staged open-heart surgeries as performed by other surgeons.

  • Robert Harrington

    Robert Harrington

    Arthur L. Bloomfield Professor of Medicine

    Bio Dr. Robert A. Harrington is an interventional cardiologist and the Arthur L. Bloomfield Professor of Medicine and Chairman of the Department of Medicine at Stanford University. Dr. Harrington was previously the Richard Sean Stack, MD Distinguished Professor and the Director of the Duke Clinical Research Institute (DCRI) at Duke University. His research interests include evaluating antithrombotic therapies to treat acute ischemic heart disease and to minimize the acute complications of percutaneous coronary procedures, studying the mechanism of disease of the acute coronary syndromes, understanding the issue of risk stratification in the care of patients with acute ischemic coronary syndromes, building local, national and international collaborations for the efficient conduct of innovative clinical research and trying to better understand and improve upon the methodology of clinical research. His research has been extensively funded through NIH, NIA, other peer reviewed agencies and private industry. Committed to training and mentorship, Harrington has served as the principal mentor for more than 20 post-doctoral clinical research fellows focused on cardiovascular research.

    He has authored more than 640 peer-reviewed manuscripts, reviews, book chapters, and editorials. Thomson Reuters lists him as one of the most cited investigators in clinical medicine from 2002-2014. He is a deputy editor of JAMA Cardiology and an editorial board member for the Journal of the American College of Cardiology. He has served as editor of five textbooks and is a senior editor of the 13th and 14th editions of Hurst?s The Heart, one of the leading textbooks of cardiovascular medicine. He has been a member of the NHLBI?s Clinical Trials Study Section and the IOM?s Working Group on Data Sharing. He served as a member of the NIH NCATS Advisory Council Working Group on the IOM CTSA Program. He recently served a second term as a member and the chair of the US Food and Drug Administration Cardiovascular and Renal Drugs Advisory Committee.

    Harrington was recently a member of the American College of Cardiology (ACC) Board of Trustees and is currently a member of the American Heart Association?s (AHA) Board of Directors, its Science Advisory and Coordinating Committee, and its President-elect. He will serve as the AHA President beginning in July 2019. He served as the Chair for the AHA?s Scientific Sessions in 2013 and 2014. Harrington is a Fellow of the American College of Cardiology, the American Heart Association, the Society for Cardiac Angiography and Intervention, the European Society of Cardiology, the American College of Chest Physicians and the American College of Physicians. He is an elected member of the Association of American Physicians and the Association of University Cardiologists. In 2015, he was elected to membership in the National Academy of Medicine/Institute of Medicine. In 2016, he was named a Master of the American College of Cardiology. He was awarded the AHA's Clinical Research Prize in 2017.

    Harrington received his BA in English at the College of the Holy Cross, Worcester, MA. He attended Dartmouth Medical School and received his MD from Tufts University School of Medicine, Boston MA. He did his internship, residency and served as the chief resident in internal medicine at the University of Massachusetts Medical Center, Worcester MA. He trained in cardiology, interventional cardiology and clinical research (Duke Databank for Cardiovascular Disease) at Duke University Medical Center, Durham NC where he was a faculty member from 1993-2012 before joining the Stanford University faculty in 2012. Interested in innovative learning tools, including novel methods of communicating scientific information, Harrington hosts a regular podcast on theheart.org, The Bob Harrington Show, and can be followed on Twitter @HeartBobH.

  • Paul Heidenreich, MD

    Paul Heidenreich, MD

    Professor of Medicine (Cardiovascular)

    Current Research and Scholarly Interests My research interests include

    1) The cost-effectiveness of new cardiovascular technologies.
    Example: tests to screen asymptomatic patients for left ventricular systolic dysfunction.

    2) Interventions to improve the quality of care of patients with heart disease. Examples: include clinical reminders and home monitoring.

    3) Outcomes research using existing clinical and administrative datasets.

    4) Use of echocardiography to predict prognosis (e.g. diastolic dysfunction).

  • Sarah Heilshorn

    Sarah Heilshorn

    Professor of Materials Science and Engineering and, by courtesy, of Bioengineering and of Chemical Engineering

    Current Research and Scholarly Interests Protein engineering
    Tissue engineering
    Regenerative medicine
    Biomaterials

  • H. Craig Heller

    H. Craig Heller

    Lorry I. Lokey/Business Wire Professor

    Current Research and Scholarly Interests Neurobiology of sleep, circadian rhythms, regulation of body temperature, mammalian hibernation, and human exercise physiology. Currently applying background in sleep and circadian neurobiology the understanding and correcting the learning disability of Down Syndrome.

  • Jill Helms

    Jill Helms

    Professor of Surgery (Plastic & Reconstructive Surgery)

    Current Research and Scholarly Interests Dr. Helms' research interests center around regenerative medicine and craniofacial development.

  • William Hiesinger, MD

    William Hiesinger, MD

    Assistant Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    Bio Dr. Hiesinger is a board-certified, fellowship-trained specialist in adult cardiac surgery. He is also an assistant professor in the Department of Cardiothoracic Surgery at Stanford University School of Medicine.

    Dr. Hiesinger?s clinical focus encompasses the full spectrum of cardiothoracic conditions and treatment approaches, such as heart transplantation, lung transplantation, mitral and aortic valve repair, cardiomyopathy surgical treatment, and coronary artery bypass procedures. He serves as Surgical Director of the Stanford Mechanical Circulatory Support Program, where he leads and directs the surgical implantation of ventricular assist devices (VADs) in patients with end-stage heart failure.

    The National Institutes of Health and the Thoracic Surgery Foundation have awarded funds to support Dr. Hiesinger?s research. In the Stanford Cardiothoracic Therapeutics and Surgery Laboratory, he investigates innovations such as bioengineered devices, tissue engineering, and angiogenic cytokine therapy for the treatment of ischemic heart failure.

    He has published extensively on new techniques in ventricular assist device implantation, advances in life support for cardiac failure, cell transplantation in heart failure, and many other topics. His work has appeared in the Journal of Thoracic and Cardiovascular Surgery, Journal of Vascular Surgery, Journal of Cardiac Failure, Current Treatment Options in Cardiovascular Medicine, and elsewhere. In addition, Dr. Hiesinger is a reviewer for the publication Circulation.

    He teaches courses on cardiothoracic surgery skills. He also advises surgeons of the future.

    Dr. Hiesinger has won awards for his research and scholarship, including the Surgical Resident of the Year Award, Jonathan E. Rhoads Research Award, Clyde F. Baker Research Prize, and I.S. Ravdin Prize, all from his alma mater, the University of Pennsylvania. He was a finalist for the Vivien Thomas Young Investigator Award from the American Heart Association.

    Dr. Hiesinger is a member of the Society of Thoracic Surgeons and serves on the Workforce on Surgical Treatment of End-Stage Cardiopulmonary Disease national committee. He is also a member of the American Heart Association Council for Cardiothoracic and Vascular Surgery.

  • Karen G. Hirsch, MD

    Karen G. Hirsch, MD

    Associate Professor of Neurology and, by courtesy, of Neurosurgery

    Current Research and Scholarly Interests Dr. Karen G. Hirsch cares for critically ill patients with neurologic disorders in the intensive care unit and for patients with cerebrovascular disease in the inpatient stroke unit. Dr. Hirsch's research focuses on novel imaging techniques such as functional brain imaging in patients with cardiac arrest and traumatic brain injury. She also studies methods of non-invasive measurement of cerebral blood flow, oxygenation, and cerebrovascular autoregulation and how these parameters might be targeted to improve outcome in patients with neurologic injury. In the outpatient clinic, she sees patients with head injury, stroke and other neurovascular diseases in addition to patients who have been discharged from the neurological intensive care unit.

  • Mark Hlatky, MD

    Mark Hlatky, MD

    Professor of Medicine (Health Services Research), of Medicine (Cardiovascular Medicine) and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly Interests My main research work is in "outcomes research", especially examining the field of cardiovascular medicine. Particular areas of interest are the integration of economic and quality of life data into randomized clinical trials, evidence-based medicine, decision models, and cost-effectiveness analysis. I am also interested in the application of novel genetic, biomarker, and imaging tests to assess risk and guide clinical management of coronary artery disease.

  • Ngan F. Huang

    Ngan F. Huang

    Assistant Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering

    Current Research and Scholarly Interests Dr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.

  • John P.A. Ioannidis

    John P.A. Ioannidis

    Professor of Medicine (Stanford Prevention Research), of Epidemiology and Population Health and by courtesy, of Statistics and of Biomedical Data Science

    Current Research and Scholarly Interests Meta-research
    Evidence-based medicine
    Clinical and molecular epidemiology
    Human genome epidemiology
    Research design
    Reporting of research
    Empirical evaluation of bias in research
    Randomized trials
    Statistical methods and modeling
    Meta-analysis and large-scale evidence
    Prognosis, predictive, personalized, precision medicine and health
    Sociology of science

  • Haruka Itakura

    Haruka Itakura

    Assistant Professor of Medicine (Oncology)

    Bio Dr. Itakura is an Assistant Professor of Medicine (Oncology) in the Stanford University School of Medicine and practicing oncologist at the Stanford Cancer Center with background in biomedical informatics. She is a physician-scientist whose research mission is to drive medical advances at the intersection of cancer and data science research. Specifically, she aims to innovate state-of-the-art technologies to extract clinically useful knowledge from heterogeneous multi-scale biomedical data to improve diagnostics and therapeutics in cancer. She is a board-certified hematologist-oncologist and informaticist with specialized training in basic science, health services, and translational research. Her clinical background in oncology and PhD training in Biomedical Informatics position her to develop and apply data science methodologies on heterogeneous, multi-scale cancer data to extract actionable knowledge that can improve patient outcomes. Her ongoing research to develop and apply cutting-edge knowledge and skills to pioneer new robust methodologies for analyzing cancer big data is being supported by an NIH K01 Career Development Award in Biomedical Big Data Science. Her research focuses on developing and applying machine learning frameworks and radiogenomic approaches for the integrative analysis of heterogeneous, multi-scale data to accelerate discoveries in cancer diagnostics and therapeutics. Projects include prediction modeling of survival and treatment response, biomarker discovery, cancer subtype discovery, and identification of new therapeutic targets.

  • Siddhartha Jaiswal

    Siddhartha Jaiswal

    Assistant Professor of Pathology

    Current Research and Scholarly Interests We identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.

  • Alokkumar Jha

    Alokkumar Jha

    Instructor, Cardiovascular Institute

    Current Research and Scholarly Interests Systems biomedicine, Genetic Risk score, Tumor modelling, Radiomics

  • Peter Kao

    Peter Kao

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests Our research program has several active projects:
    1.) Pulmonary Vascular Disease – Simvastatin reversed experimental pulmonary hypertension, and is safe for treatment of patients. Blinded clinical trials of efficacy are in progress.
    2.) Lung inflammation and regeneration (stem cells)
    3.) Lung surfactant rheology and oxidative stress
    4.) Gene regulation by RNA binding proteins, NF45 and NF90 through transcriptional and posttranscriptional mechanisms

  • Michael S. Kapiloff, MD, PhD

    Michael S. Kapiloff, MD, PhD

    Associate Professor (Research) of Ophthalmology and, by courtesy, of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests Dr. Michael S. Kapiloff is a faculty member in the Departments of Ophthalmology and Medicine (Cardiovascular Medicine) and a member of the Stanford Cardiovascular Institute. Although Dr. Kapiloff was at one time a Board-Certified General Pediatrician, he is currently involved in full-time basic science and translational research. His laboratory studies the basic molecular mechanisms underlying the response of the retinal ganglion cell and cardiac myocyte to disease. The longstanding interest of his laboratory is the role in intracellular signal transduction of multimolecular complexes organized by scaffold proteins. Recently, his lab has also been involved in the translation of these concepts into new therapies, including the development of new AAV gene therapy biologics for the prevention and treatment of heart failure and for neuroprotection in the eye.

    URL to NCBI listing of all published works:
    http://www.ncbi.nlm.nih.gov/sites/myncbi/michael.kapiloff.1/bibliography/40252285/public/?sort=date&direction=descending

    For more information see Dr. Kapiloff's lab website: http://med.stanford.edu/kapilofflab.html

  • Ioannis Karakikes

    Ioannis Karakikes

    Assistant Professor (Research) of Cardiothoracic Surgery

    Current Research and Scholarly Interests The Karakikes Lab aims to uncover fundamental new insights into the molecular mechanisms and functional consequences of pathogenic mutations associated with familial cardiovascular diseases.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor in Pediatrics, and Professor of Genetics

    Current Research and Scholarly Interests Mark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Kiran Kaur Khush, MD

    Kiran Kaur Khush, MD

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests Dr. Khush'’s clinical research interests include the evaluation of donors and recipients for heart transplantation; mechanisms of adverse outcomes after heart transplantation, including cardiac allograft vasculopathy and antibody-mediated rejection; and development of non-invasive diagnostic approaches for post-transplant monitoring.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    Professor of Developmental Biology and, by courtesy, of Medicine (Endocrinology) and of Pediatrics (Endocrinology)

    Current Research and Scholarly Interests We study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.

  • Abby C. King

    Abby C. King

    Professor of Epidemiology & Population Health and of Medicine (Stanford Prevention Research Center)

    Current Research and Scholarly Interests My interests include applications of behavioral theory and social ecological approaches to achieve large scale changes impacting chronic disease prevention and control; expanding the reach and translation of evidence-based interventions through state-of-the-art technologies; exploring social and physical environmental influences on health; applying community participatory research perspectives to address health disparities; and policy-level approaches to health promotion/disease prevention.

  • Joshua W. Knowles

    Joshua W. Knowles

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests Genetic basis of coronary disease
    Genetic basis of insulin resistance
    Familial Hypercholesterolemia (FH)

  • Brian Kobilka

    Brian Kobilka

    Helene Irwin Fagan Chair in Cardiology

    Current Research and Scholarly Interests Structure, function and physiology of adrenergic receptors.

  • Nishita Kothary, MD

    Nishita Kothary, MD

    Professor of Radiology (Interventional Radiology)

    Current Research and Scholarly Interests Interventional Oncology: Percutaneous and transarterial interventions for diagnosis and treatment of primary and metastatic tumors (lung, liver and renal)


    Research Interest:
    Gastrointestinal and Hepatic Oncology

  • Fredric Kraemer

    Fredric Kraemer

    The Gerald M. Reaven, MD, Professor of Endocrinology

    Current Research and Scholarly Interests Our research interests are in the general area of cellular lipid and lipoprotein metabolism. The work is aimed primarily at understanding the mechanisms regulating cholesterol and triglyceride accumulation in cells. We utilize a variety of techniques from cell biology, biochemistry, and molecular biology.

  • Mark Krasnow

    Mark Krasnow

    Paul and Mildred Berg Professor

    Current Research and Scholarly Interests - Lung development and stem cells
    - Neural circuits of breathing and speaking
    - Lung diseases including lung cancer
    - New genetic model organism for biology, behavior, health and conservation

  • Thomas M. Krummel, MD, FACS/FAAP

    Thomas M. Krummel, MD, FACS/FAAP

    Emile Holman Professor, Emeritus

    Current Research and Scholarly Interests Surgical Innovation, Simulation and Virtual Reality in Surgical Education, Fetal Healing-Cellular and Biochemical Mechanisms

  • Ellen Kuhl

    Ellen Kuhl

    Walter B Reinhold Professor in the School of Engineering, Robert Bosch Chair of Mechanical Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly Interests computaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation

  • Calvin Kuo

    Calvin Kuo

    Maureen Lyles D'Ambrogio Professor

    Current Research and Scholarly Interests We study cancer biology, intestinal stem cells (ISC), and angiogenesis. We use primary organoid cultures of diverse tissues and tumor biopsies for immunotherapy modeling, oncogene functional screening and stem cell biology. Angiogenesis projects include blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. ISC projects apply organoid culture and ko mice to injury-inducible vs homeostatic stem cells and symmetric division mechanisms.

  • WILLIAM T. KUO, MD, FSIR, FCCP, FSVM, FACR, FCIRSE

    WILLIAM T. KUO, MD, FSIR, FCCP, FSVM, FACR, FCIRSE

    Professor of Radiology (Interventional Radiology)

    Current Research and Scholarly Interests 1) LASER-ASSISTED AND COMPLEX IVC FILTER RETRIEVAL
    2) CATHETER-DIRECTED THERAPY FOR ACUTE PULMONARY EMBOLISM
    3) INTERNATIONAL PE REGISTRY
    4) IVC FILTER REGISTRY
    5) ENDOVASCULAR TREATMENT OF CAVAL AND DEEP VENOUS THROMBOSIS

  • Richard Lafayette

    Richard Lafayette

    Professor of Medicine (Nephrology)

    Current Research and Scholarly Interests We are continuing to grow a glomerulonephritis cohort study, including immunologic characterization. We have completed interventional studies of preeclampsia exploring the nitric oxide, endothelin system and effects on glomerular function and morphometry. We continue to recruit patients for treatment and observational studies of glomerular disease, including FSGS, membranous and particularly IgA nephropathy. We also are actively studying renal disease in systemic amyloidosis.

  • Laura C. Lazzeroni, Ph.D.

    Laura C. Lazzeroni, Ph.D.

    Professor (Research) of Psychiatry and Behavioral Sciences and of Biomedical Data Science

    Current Research and Scholarly Interests Statistics/Data Science. I develop & apply models, methods & algorithms for complex data in medical science & biology. I am also interested in the interplay between fundamental statistical properties (e.g. variability, bias, p-values) & how scientists actually use & interpret data. My work in statistical genetics includes: the invention of Plaid bi-clustering for gene expression data; methods for twin, association, & family studies; multiple testing & estimation for high dimensional arrays.

  • Anson Lee

    Anson Lee

    Assistant Professor of Cardiothoracic Surgery (Adult Cardiac Surgery)

    Bio Dr. Anson Lee specializes in the surgical treatment of all heart diseases, including ischemic heart disease, structural heart disease, aortic disease, and arrhythmias. He has practiced cardiothoracic surgery at Stanford since 2015. Dr. Lee has a special interest in the surgical treatment of abnormal heart rhythms and minimally invasive techniques to treat heart disease.

  • David Lee, MD

    David Lee, MD

    Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly Interests 1. Novel treatments and devices for the treatment of valvular disease
    2. Alcohol septal ablation for hypertrophic obstructive cardiomyopathy
    3. Novel approaches to coronary revascularization
    4. Closure devices for atrial septal defects and patent foramen ovale
    5. Novel treatments for hypertension

  • Jason T. Lee

    Jason T. Lee

    Professor of Surgery (Vascular Surgery)

    Current Research and Scholarly Interests Dr. Lee is the Principal Investigator on several clinical trials examining therapeutic strategies for management of complex aortic aneurysm disease as well as aortic dissection.

    Dr. Lee’s clinical interests include:

    •Endovascular repair of abdominal/thoracic aneurysms and dissections
    Fenestrated and Branch Repair of the thoracic, thoracoabdominal, and abdominal aneurysms
    •Carotid stenting
    •Thoracic outlet syndrome
    •Vascular disorders in high-performance athletes

  • Jennifer Lee

    Jennifer Lee

    Associate Professor of Medicine (Endocrinology) and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly Interests I am a clinical scientist (PhD epidemiology), endocrinologist, and CMO at VAPA Cooperative Studies Program Coordinating Center . My group does pattern and prediction mapping along the life-course of interventions/outcomes and how healthcare system can positively impact health longitudinally. We use novel molecular epi, 'big' data like EHRs with advanced new designs/methods/technologies. These interests cut across multiple complex chronic diseases, aging, & critical lifespan stages.

  • So Ah Lee

    So Ah Lee

    Postdoctoral Research Fellow, Cardiovascular Institute

    Bio Soah is a biomaterials scientist and bio engineer who specializes in developing artificial cell niche using hydrogels for various tissue engineering/drug delivery applications.

    During 5 years of Ph.D. training in Stem Cell and Biomaterials Laboratory under Dr. Fan Yang's guidance, Soah has focused on developing novel hydrogel-based cell niche platforms and examining effect of biophysical properties of the cell niche using various natural polymers (Matrigel, collagen, alginate, etc.) and synthetic polymers (poly(ethylene glycol), poly(acryl amide) etc.).

    After completion of her Ph.D. training, she has joined Sean Wu's lab in CVI to extend her expertise in biomaterials to develop a bioink for bioprinting 3D cardiac tissues.

  • Lawrence Leung

    Lawrence Leung

    Maureen Lyles D'Ambrogio Professor in the School of Medicine

    Current Research and Scholarly Interests Our long term interest is to have a better understanding of the natural antithrombotic pathways and the pathophysiology of vascular thrombosis. We have focused on thrombin, the key enzyme in the blood clotting cascade.Our goal is to develop new antithrombotic agents and devise new diagnostic tests for vascular thrombotic disorders.

  • Marc Levenston

    Marc Levenston

    Associate Professor of Mechanical Engineering and, by courtesy, of Radiology (Radiological Sciences Laboratory)

    Current Research and Scholarly Interests My lab's research involves the function, degeneration and repair of musculoskeletal soft tissues, with a focus on meniscal fibrocartilage and articular cartilage. We are particularly interested in the complex interactions between biophysical and biochemical cues in controlling cell behavior, the roles of these interactions in degenerative conditions such as osteoarthritis, and development of tissue engineered 3D model systems for studying physical influences on primary and progenitor cells.

  • Craig Levin

    Craig Levin

    Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly Interests Molecular Imaging Instrumentation
    Laboratory

    Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects.

  • Eldrin F. Lewis, MD, MPH

    Eldrin F. Lewis, MD, MPH

    Simon H Stertzer, M.D. Professor

    Bio Dr. Lewis is a board-certified, fellowship-trained specialist in cardiovascular medicine. He is the chief of the Division of Cardiovascular Medicine and a professor of cardiovascular medicine.

    Dr. Lewis is an esteemed clinician-scientist who specializes in the care of patients with advanced heart failure. He is an internationally recognized expert on heart failure, heart transplant, and quality of life for heart failure patients. He cares deeply about his patients as well as his colleagues, the hospital, and the School of Medicine. Dr. Lewis is committed to diversity and inclusion, as well as expanding Stanford clinical research initiatives.

    A fundamental principle of Dr. Lewis? practice is his belief that ?there is more to life than death,? that cardiovascular care should go beyond helping patients survive to also helping them enjoy the best possible quality of life.

    Dr. Lewis has deep expertise in conducting clinical trials examining diagnostic and therapeutic approaches to heart failure. He has done innovative work to create systems for incorporating quality of life measures for cardiovascular patients into electronic health records. This research has received support from the National Heart, Lung and Blood Institute and the National Institutes of Health.

    Much of his quality of life research has focused on patient-reported outcomes. Dr. Lewis emphasizes the importance of looking at how a disease, whether chronic or acute, impacts people?s ability to function and perform their activities of daily living. Strategies to improve patients? well-being focus not only on their physical symptoms but also on depression, anxiety, exercise capacity, and ability to function in daily living.

    Dr. Lewis? commitment to expanding clinical research initiatives will give patients more opportunities to participate in the clinical trials and access the latest care strategies that can translate into better outcomes. The goal is early access to the most advanced technology, pharmacology, and device therapy that can change outcomes for the better. He also envisions forming closer partnerships with community cardiologists and capitalizing further on Stanford?s proximity to and unique relationships with the digital technology leaders of Silicon Valley to enhance the use of digital technology for monitoring patients, optimizing treatment, and tracking outcomes.

    He has authored nearly 200 articles published in peer-reviewed journals including the New England Journal of Medicine, Journal of the American College of Cardiology, Circulation, JAMA Cardiology, JAMA Internal Medicine, and many more. He is also on multiple editorial boards for cardiovascular journals and was an associate editor for Circulation?Heart Failure. In addition, he is an author of professional society clinical practice guidelines and scientific statements from both the American Heart Association (AHA) and the Food and Drug Administration.

    Dr. Lewis? honors for clinical care, scholarship, and research include the Joel Gordon Miller Award for community service and leadership from the University of Pennsylvania School of Medicine. He also was one of the first recipients of the Minority Faculty Development Award, which recognizes the research potential of young physicians. Dr. Lewis has received a grant from the Robert Wood Johnson Foundation to study the role of quality of life assessment in clinical decision making in patients with heart failure.

    He is a fellow of the American College of Cardiology and the National American Heart Association (AHA) Research Committee. In addition, Dr. Lewis was as a member of the AHA Founders Affiliate Board of Directors, chair of the Council on Clinical Cardiology, and research chair of the Association of Black Cardiologists. He also serves on scientific committees to review grants for the AHA and on the FDA Task Force for the Standardization of Definitions for Endpoint Events in Cardiovascular Trials.

  • Jin Billy Li

    Jin Billy Li

    Associate Professor of Genetics

    Current Research and Scholarly Interests The Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.

  • David Liang, MD, PhD

    David Liang, MD, PhD

    Professor of Medicine (Cardiovascular) at the Stanford University Medical Center, Emeritus

    Bio Stanford researchers are creating a micro-device that physicians could guide through the body to help diagnose and treat clogged arteries and other diseases. Tethered to the outside world by a thin wire, a tiny machine creeps through blood vessels, searching out deadly plaques and obliterating them with a zap of a laser. While a laser will come later, for now David Liang, MD, PhD, is focusing on a tiny eye that could give physicians an unprecedented view into blood vessels.

  • Ronglih Liao

    Ronglih Liao

    Professor of Medicine (Cardiovascular Medicine)

    Bio Dr. Liao is a Professor of Medicine and co-Director of Stanford Cardiac Amyloid Center. The major goal of her research program focuses on understanding the mechanisms that underlie the pathophysiology of heart failure and developing novel treatments to combat this process. Her laboratory has played an international leading role in the study of amyloid light chain (AL) cardiomyopathy, a rare and fatal form of cardiovascular disease. We have described the underlying pathophysiologic basis for amyloid cardiomyopathy and found that the circulating amyloidogenic light chain proteins that characterize this disease directly result in a specific cardiotoxic response. Consequently, our research work has redefined AL cardiomyopathy and has raised new treatment approaches. More recently, her research efforts have expanded to include transthyretin (ATTR) cardiac amyloidosis.

    In line with her goal of revealing novel therapeutic strategies for patients with cardiovascular disease, our efforts have also focused on characterizing and harnessing endogenous cardiac regenerative mechanisms. Her laboratory initially demonstrated the therapeutic potential of exogenous primitive muscle cells delivered to the injured heart. This work was among the earliest milestones in the field and served as the basis for an international trial of cell-based therapy. Subsequently, Liao lab identified and characterized a population of cardiac progenitor cells and its relationship and dynamic activity following cardiac injury in the adult heart. Her laboratory aims to reveal the molecular mechanisms regulating the endogenous regenerative capacity of the heart and to harness such repair mechanisms for the treatment of cardiovascular disease. Dr. Liao has lectured extensively on both amyloid cardiomyopathy and stem cell biology, and have maintained a history of independent NIH funding in these areas for more than two decades.

    Over the course of her academic career, she has taken the greatest pride in mentoring the next generation of scientists. Dr. Liao has had the privilege to supervise several dozen students, postdoctoral fellows, and junior faculty, many of whom have gone on to independent academic careers at the highest institutions. Her contribution to the advancement of scientific knowledge also includes lecturing at various university and academic institutions as well as at scores of conferences and symposia locally, nationally, and internationally.

  • Michaela Liedtke

    Michaela Liedtke

    Associate Professor of Medicine (Hematology)

    Current Research and Scholarly Interests 1) Design of phase I/II trials for the treatment of Multiple Myeloma and Amyloidosis

    2) Conduct of clinical trials to improve the treatment of patients with acute lymphoblastic leukemia (ALL)

    3) Outcomes research using clinical databases for patients with Multiple Myeloma and Amyloidosis

    4) Characterization of the molecular mechanism of MLL-induced acute leukemia

  • Bruce Ling

    Bruce Ling

    Assistant Professor (Research) of Surgery (Pediatric Surgery)

    Bio Clinical Focus
    ? Big data analytics for quality improvement and clinical effectiveness
    ? Disease biomarker discovery through multi-omics based analyses

    Academic Appointments
    ? Assistant Professor Surgery

    Professional Education
    ? B.S., Biochemistry, Fudan University, China (1990)
    ? M.A., Molecular and Developmental Biology, UCLA, US (1994)
    ? Ph.D., Biological Chemistry, UCLA, US (1996)
    ? Postdoctoral training, medicine/oncology/Computer science, Stanford University, US (1996-1998)
    ? Business administration, Leavey School of Business, Santa Clara University, US (2000-2001)

  • Juliana Liu, MSN, RN, ANP-C

    Juliana Liu, MSN, RN, ANP-C

    Affiliate, CVI/Vera Moulton Wall Center

    Bio Juliana Liu, MSN, RN, ANP-C is the Program Manager and Nurse Practitioner for the Adult Pulmonary Hypertension Service at Stanford. She received her Adult Nurse Practitioner (ANP) degree from the University of California, San Francisco School of Nursing. She has a BA in History from Pomona College. Juliana Liu has worked in the Pulmonary Hypertension field since 2002, and has presented at numerous nursing and patient conferences in the US and abroad. She has also served as member and chair on several committees of the Pulmonary Hypertension Association.

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    Current Research and Scholarly Interests We have developed a strategy to generate fairly pure populations of various human tissue progenitors in a dish from embryonic stem cells (ESCs). We have delineated the sequential lineage steps through which ESCs diversify into various tissues, and in so doing, developed methods to exclusively induce certain fates at the expense of others. The resultant pure populations of tissue progenitors are the fundamental building blocks for regenerative medicine.

  • Jonathan Z. Long

    Jonathan Z. Long

    Assistant Professor of Pathology

    Current Research and Scholarly Interests Our laboratory focuses on the endocrine hormones and other circulating hormone-like molecules that regulate mammalian energy metabolism. With modern mass spectrometry, it is now recognized that blood plasma likely contains many more bioactive factors than previously recognized, secreted by cell types that were not previously considered to have endocrine functions. What are the identities of these molecules? What energy stressors do they respond to? Where are they made? What cell types or tissues do they act on? We use chemical biology and mass spectrometry-based technologies as discovery tools. We combine these tools with classical biochemical and genetic approaches in cell and animal models. Our goal is to uncover new endocrine pathways of organismal energy metabolism. Recent studies from our laboratory have identified a family of cold-regulated circulating lipids that stimulate mitochondrial respiration as well as an exercise-stimulated thermogenic polypeptide hormone. We suspect that many more remain to be discovered. We anticipate that our approach will uncover fundamental mechanisms that control mammalian energy homeostasis. In the long term, we hope to translate our discoveries into therapeutic opportunities that matter for metabolic and other age-associated chronic diseases.

  • Michael Longaker

    Michael Longaker

    Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly Interests We have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.

  • Michael Ma

    Michael Ma

    Assistant Professor of Cardiothoracic Surgery

    Current Research and Scholarly Interests Our lab aims to understand the biomechanics that govern a wide spectrum of congenital heart defects, and how those biomechanics change with contemporary operative repair strategies. We simulate operations virtually via CFD, and in ex vivo and in vivo animal models, and analyze how the changes we make alter fluid flow, pressure, and stresses throughout the system. We hope that these experiments can impact and optimize existing techniques that translate quickly to the operating room.

  • Sean Mackey, M.D., Ph.D.

    Sean Mackey, M.D., Ph.D.

    Redlich Professor, Professor of Anesthesiology, Perioperative, and Pain Medicine and, by courtesy, of Neurology

    Current Research and Scholarly Interests Multiple NIH funded projects to characterize CNS mechanisms of human pain. Comparative effectiveness of cognitive behavioral therapy and chronic pain self-management within the context of opioid reduction (PCORI funded). Single session pain catastrophizing treatment: comparative efficacy & mechanisms (NIH R01). Development and implementation of an open-source learning healthcare system, CHOIR (http://choir/stanford.edu), to optimize pain care and innovative research in real-world patients.

  • Merritt Maduke

    Merritt Maduke

    Associate Professor of Molecular and Cellular Physiology

    Current Research and Scholarly Interests Molecular mechanisms of ion chnanels & transporters studied by integration of structural and electrophysiological methods.

  • Holden Maecker

    Holden Maecker

    Professor (Research) of Microbiology and Immunology

    Current Research and Scholarly Interests I'm interested in immune monitoring of T cell responses to chronic pathogens and cancer, and the correlation of T cell response signatures with disease protection.

  • Kenneth Mahaffey

    Kenneth Mahaffey

    Professor of Medicine (Cardiovascular Medicine)

    Bio Clinical Focus: Cardiovascular Medicine: Atrial Fibrillation; Chronic CAD; ACS;

    Research Focus:

    My primary research interest is the design and conduct of multicenter clinical trials and analyses of important clinical cardiac issues using large patient databases. My research focuses on novel anticoagulation agents for the treatment of acute coronary syndromes and atrial fibrillation, the study of agents targeted to protect the myocardium during reperfusion therapy for acute myocardial infarction, and the evaluation of cardiovascular safety of diabetic therapies. I am also interested in the methodology of clinical trials. Current research activities include standardization of the definition of myocardial infarction used in clinical trials, the adjudication of suspected clinical endpoint events by Clinical Event Committees (CEC), and the efficient operational conduct of large multinational clinical trials.

    Administrative Focus: Vice Chair of Clinical Research in the Department of Medicine and Member of the Stanford IRB

    Professional Training:

    1985 Stanford University, BS Chemistry
    1989 University of Washington, MD
    1993 University of Arizona, Internship/Residency/Chief Residency
    1996 Duke University, Fellowship in Cardiology
    1996 Duke University, Faculty in Cardiology
    2013 Stanford University, Vice Chair of Clinical Research, Department of Medicine

  • David J. Maron

    David J. Maron

    C. F. Rehnborg Professor and Professor of Medicine (Stanford Prevention Research Center)

    Current Research and Scholarly Interests Dr. Maron is the Co-Chair and Principal Investigator of the ISCHEMIA trial, and Co-Chair of the ISCHEMIA-CKD trial. These large, international, NIH-funded studies will determine whether an initial invasive strategy of cardiac catheterization and revascularization plus optimal medical therapy will reduce cardiovascular events in patients with and without chronic kidney disease and at least moderate ischemia compared to an initial conservative strategy of optimal medical therapy alone.

  • Alison Marsden

    Alison Marsden

    Professor of Pediatrics (Cardiology) and of Bioengineering

    Current Research and Scholarly Interests The Cardiovascular Biomechanics Computation Lab at Stanford develops novel computational methods for the study of cardiovascular disease progression, surgical methods, and medical devices. We have a particular interest in pediatric cardiology, and use virtual surgery to design novel surgical concepts for children born with heart defects.

  • AC Matin

    AC Matin

    Professor of Microbiology and Immunology

    Current Research and Scholarly Interests 1. Improvement of our newly discovered cancer prodrug regimen that permits noninvaisve visualization of drug activation. 2. Tracking tumors & cancer metastases using bacterial magnetite and newly developed single-cell tracking by MRI. 3. Molecular basis of bacterial planktonic and biofilm antibiotic resistance on Earth and under space microgravity -- development of new countermeasures; 4. Bioremediation.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    Bio The Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include ?nanostraw? drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ?fuse? into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ?bridge? projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Mark Mercola

    Mark Mercola

    Professor of Medicine (Cardiovascular)

    Bio Dr. Mercola is Professor of Medicine and Professor in the Stanford Cardiovascular Institute. He completed postdoctoral training at the Dana-Farber Cancer Institute and Harvard Medical School, was on the faculty in the Department of Cell Biology at Harvard Medical School for 12 years, and later at the Sanford-Burnham-Prebys Institute and Department of Bioengineering at the University of California, San Diego before relocating to Stanford in 2015.

    Prof. Mercola is known for identifying many of the factors that are responsible for inducing and forming the heart, including the discovery that Wnt inhibition is a critical step in cardiogenesis that provided the conceptual basis and reagents for the large-scale production of cardiovascular tissues from pluripotent stem cells. He has collaborated with medicinal chemists, optical engineers and software developers to pioneer the use of patient iPSC-cardiomyocytes for disease modeling, safety pharmacology and drug development. His academic research is focused on developing and using quantitative high throughput assays of patient-specific cardiomyocyte function to discover druggable targets for preserving contractile function in heart failure and promoting regeneration following ischemic injury. He co-established drug screening and assay development at the Conrad Prebys Drug Discovery Center (San Diego), which operated as one of 4 large screening centers of the US National Institutes of Health (NIH) Molecular Libraries screening initiative and continues as one of the largest academic drug screening centers.

    Prof. Mercola received an NIH MERIT award for his work on heart formation. He holds numerous patents, including describing the invention of the first engineered dominant negative protein and small molecules for stem cell and cancer applications. He serves on multiple editorial and advisory boards, including Vala Sciences, Regencor, The Ted Rogers Centre for Heart Research and the Human Biomolecular Research Institute. His laboratory is funded by the National Institutes of Health (NIH), California Institute for Regenerative Medicine, Phospholamban Foundation and Fondation Leducq.

  • D. Craig Miller, M.D.

    D. Craig Miller, M.D.

    Thelma and Henry Doelger Professor in Cardiovascular Surgery

    Current Research and Scholarly Interests Cardiac and heart valve disease with experimental laboratory large animal projects focused on the investigation of left ventricular and cardiac mechanics, bioenergetics, and LV and mitral valve physiology and pathophysiology. Current thrust is aimed at understanding the mitral valve and subvalvular mitral apparatus and transmural LV wall strains, thickening, and myolaminar fiber-sheet mechanics.

    Clinical research interests include thoracic aortic diseases (aortic dissection, aneurysm) and cardiac valvular disease, including surgical treatment, endovascular thoracic aortic stent-graft repair, mitral valve repair, and valve-sparing aortic root replacement.

  • Lloyd B. Minor, MD

    Lloyd B. Minor, MD

    The Carl and Elizabeth Naumann Professorship for the Dean of the School of Medicine, Professor of Otolaryngology?Head & Neck Surgery and, by courtesy, of Neurobiology and Bioengineering

    Bio Lloyd B. Minor, MD, is a scientist, surgeon, and academic leader. He is the Carl and Elizabeth Naumann Dean of the Stanford University School of Medicine, a position he has held since December 2012.

    As dean, Dr. Minor plays an integral role in setting strategy for the clinical enterprise of Stanford Medicine, an academic medical center that includes the Stanford University School of Medicine, Stanford Health Care, and Stanford Children?s Health and Lucile Packard Children?s Hospital Stanford. He also oversees the quality of Stanford Medicine?s physician practices and growing clinical networks.

    With Dr. Minor?s leadership, Stanford Medicine has established a strategic vision to lead the biomedical revolution in Precision Health. The next generation of health care, Precision Health is focused on keeping people healthy and providing care that is tailored to individual variations. It?s predictive, proactive, preemptive, personalized, and patient-centered.

    An advocate for innovation, Dr. Minor has provided significant support for fundamental science and for clinical and translational research at Stanford. Through bold initiatives in medical education and increased support for PhD students, Dr. Minor is committed to inspiring and training future leaders.

    Among other accomplishments Dr. Minor has led the development and implementation of an innovative model for cancer research and patient care delivery at Stanford Medicine and has launched an initiative in biomedical data science to harness the power of big data and create a learning health care system. Committed to diversity, he has increased student financial aid and expanded faculty leadership opportunities.

    Before coming to Stanford, Dr. Minor was provost and senior vice president for academic affairs of The Johns Hopkins University. During his time as provost, Dr. Minor launched many university-wide initiatives such as the Gateway Sciences Initiative to support pedagogical innovation, and the Doctor of Philosophy Board to promote excellence in PhD education. He worked with others around the university and health system to coordinate the Individualized Health Initiative, which aimed to use genetic information to transform health care.

    Prior to his appointment as provost in 2009, Dr. Minor served as the Andelot Professor and director (chair) of the Department of Otolaryngology?Head and Neck Surgery in the Johns Hopkins University School of Medicine and otolaryngologist-in-chief of The Johns Hopkins Hospital. During his six-year tenure, he expanded annual research funding by more than half and increased clinical activity by more than 30 percent, while strengthening teaching efforts and student training.

    With more than 140 published articles and chapters, Dr. Minor is an expert in balance and inner ear disorders. Through neurophysiological investigations of eye movements and neuronal pathways, his work has identified adaptive mechanisms responsible for compensation to vestibular injury in a model system for studies of motor learning (the vestibulo-ocular reflex). The synergies between this basic research and clinical studies have led to improved methods for the diagnosis and treatment of balance disorders. In recognition of his work in refining a treatment for Ménière?s disease, Dr. Minor received the Prosper Ménière Society?s gold medal in 2010.

    In the medical community, Dr. Minor is perhaps best known for his discovery of superior canal dehiscence syndrome, a debilitating disorder characterized by sound- or pressure-induced dizziness. In 1998 Dr. Minor and colleagues published a description of the clinical manifestations of the syndrome and related its cause to an opening (dehiscence) in the bone covering the superior canal. He subsequently developed a surgical procedure that corrects the problem and alleviates symptoms.

    In 2012, Dr. Minor was elected to the National Academy of Medicine, formerly the Institute of Medicine.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    The George D. Smith Professor in Translational Medicine

    Current Research and Scholarly Interests Two areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • Stephen B. Montgomery

    Stephen B. Montgomery

    Associate Professor of Pathology, of Genetics and, by courtesy, of Computer Science

    Current Research and Scholarly Interests We focus on understanding the effects of genome variation on cellular phenotypes and cellular modeling of disease through genomic approaches such as next generation RNA sequencing in combination with developing and utilizing state-of-the-art bioinformatics and statistical genetics approaches. See our website at http://montgomerylab.stanford.edu/

Stanford Medicine Resources: