ERROR! No headcode.htm file found.

Bio

Stanford Advisors


Publications

All Publications


  • The Effects of Macrophage Phenotype on Osteogenic Differentiation of MSCs in the Presence of Polyethylene Particles BIOMEDICINES Gao, Q., Rhee, C., Maruyama, M., Li, Z., Shen, H., Zhang, N., Utsunomiya, T., Huang, E., Yao, Z., Bunnell, B. A., Lin, H., Tuan, R. S., Goodman, S. B. 2021; 9 (5)
  • Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue engineering. Part C, Methods Makarczyk, M. J., Gao, Q., He, Y., Li, Z., Gold, M. S., Hochberg, M., Bunnell, B., Tuan, R. S., Goodman, S. B., Lin, H. 2021

    Abstract

    Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Notably, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine.

    View details for DOI 10.1089/ten.TEC.2020.0309

    View details for PubMedID 33403944

  • PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem cell research & therapy Zhang, N. n., Lo, C. W., Utsunomiya, T. n., Maruyama, M. n., Huang, E. n., Rhee, C. n., Gao, Q. n., Yao, Z. n., Goodman, S. B. 2021; 12 (1): 40

    Abstract

    Mesenchymal stem cell (MSC)-based therapy has the potential for immunomodulation and enhancement of tissue regeneration. Genetically modified MSCs that over-express specific cytokines, growth factors, or chemokines have shown great promise in pre-clinical studies. In this regard, the anti-inflammatory cytokine interleukin (IL)-4 converts pro-inflammatory M1 macrophages into an anti-inflammatory M2 phenotype; M2 macrophages mitigate chronic inflammation and enhance osteogenesis by MSC lineage cells. However, exposure to IL-4 prematurely inhibits osteogenesis of MSCs in vitro; furthermore, IL-4 overexpressing MSCs inhibit osteogenesis in vivo during the acute inflammatory period. Platelet-derived growth factor (PDGF)-BB has been shown to enhance osteogenesis of MSCs with a dose-dependent effect.In this study, we generated a lentiviral vector that produces PDGF-BB under a weak promoter (phosphoglycerate kinase, PGK) and lentiviral vector producing IL-4 under a strong promoter (cytomegalovirus, CMV). We infected MSCs with PDGF-BB and IL-4-producing lentiviral vectors separately or in combination to investigate cell proliferation and viability, protein expression, and the capability for osteogenesis.PDGF-BB and IL-4 co-overexpression was observed in the co-infected MSCs and shown to enhance cell proliferation and viability, and osteogenesis compared to IL-4 overexpressing MSCs alone.Overexpression of PDGF-BB together with IL-4 mitigates the inhibitory effect of IL-4 on osteogenesis by IL-4 overexpressing MSCS. PDGF-BB and IL-4 overexpressing MSCs may be a potential strategy to facilitate osteogenesis in scenarios of both acute and chronic inflammation.

    View details for DOI 10.1186/s13287-020-02086-8

    View details for PubMedID 33413614

Stanford Medicine Resources: