ERROR! No headcode.htm file found.

School of Medicine


Showing 11-20 of 26 Results

  • Daniel Jarosz

    Daniel Jarosz

    Associate Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly Interests My laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Michael Lin

    Michael Lin

    Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.

  • Tobias Meyer

    Tobias Meyer

    Mrs. George A. Winzer Professor in Cell Biology

    Current Research and Scholarly Interests CELLULAR INFORMATION PROCESSING. We are using live single-cell microscopy approaches to understand the design principles of cell signaling circuits. Mammalian signaling processes have a unique logic due to the large number of signaling proteins, second messengers and chromatin modifiers involved in each decision process. We are particularly interested in understanding how cells make decisions to enter and exit the cell cycle and how they decide to polarize and move.

  • Beverly S. Mitchell, M.D.

    Beverly S. Mitchell, M.D.

    George E. Becker Professor in Medicine and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Beverly Mitchell's research relates to the development of new therapies for hematologic malignancies, including leukemias and myelodsyplastic syndromes. She is interested in preclinical proof of principle studies on mechanisms inducing cell death and on metabolic targets involving nucleic acid biosynthesis in malignant cells. She is also interested in the translation of these studies into clinical trials.

  • Daria Mochly-Rosen

    Daria Mochly-Rosen

    The George D. Smith Professor in Translational Medicine

    Current Research and Scholarly Interests Two areas: 1. Using rationally-designed peptide inhibitors to study protein-protein interactions in cell signaling. Focus: protein kinase C in heart and large GTPases regulating mitochondrial dynamics in neurodegdenration. 2. Using small molecules (identified in a high throughput screens and synthetic chemistry) as activators and inhibitors of aldehyde dehydrogenases, a family of detoxifying enzymes, and glucose-6-phoshate dehydrogenase, in normal cells and in models of human diseases.

  • Lei Stanley Qi

    Lei Stanley Qi

    Assistant Professor of Bioengineering and of Chemical and Systems Biology

    Bio Dr. Lei Stanley Qi is Assistant Professor in the Department of Bioengineering, Department of Chemical and Systems Biology, and a faculty fellow in Stanford ChEM-H. He is one of major contributors to the CRISPR technology development for genome engineering. He demonstrated the first use of the nuclease-deactivated Cas9 (dCas9) for genome targeting in cells. Using dCas9, His lab developed the CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) technologies for gene expression regulation, which is broadly used for high-throughput study of genomics in different organisms. He co-developed the CRISPR application for chromatin imaging in living cells. His lab greatly expanded the CRISPR toolbox for engineering the genome and epigenome, including multiplexed epigenome editing, programmable 3D genome manipulation (CRISPR-GO), live-cell imaging (LiveFISH), and CRISPR antivirals for targeting RNA viruses (PAC-MAN). He obtained B.S. in Physics from Tsinghua University, and Ph.D. in Bioengineering from the University of California Berkeley in 2012. He joined UCSF as Systems Biology Faculty Fellow between 2012 to 2014, and joined the faculty at Stanford University since 2014. His lab combines genome engineering with synthetic biology to understand the function of mammalian genomes and develop gene therapy.

  • Richard Roth

    Richard Roth

    Professor of Chemical and Systems Biology, Emeritus

    Current Research and Scholarly Interests Insulin is one of the primary regulators of rapid anabolic responses in the body. Defects in the synthesis and/or ability of cells to respond to insulin results in the condition known as diabetes mellitus. To better design methods of treatment for this disorder, we have been focusing our research on how insulin elicits its various biological responses.

  • Jan Skotheim

    Jan Skotheim

    Professor of Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests My overarching goal is to understand how cell growth triggers cell division. Linking growth to division is important because it allows cells to maintain specific size range to best perform their physiological functions. For example, red blood cells must be small enough to flow through small capillaries, whereas macrophages must be large enough to engulf pathogens. In addition to being important for normal cell and tissue physiology, the link between growth and division is misregulated in cancer.

Stanford Medicine Resources: